Abstract

Hydraulic fracturing is extensively utilized for the prevention and control of gas outbursts and rockbursts in the deep sections of coal mines. The determination of fracturing construction parameters based on the coal seam conditions and stress environments merits further investigation. This paper constructs a damage analysis model for coal under hydraulic loads, factoring in the influence of the intermediate principal stress, grounded in the unified strength theory analysis approach. It deduces the theoretical analytical equation for the damage distribution of a coal medium subjected to small-flow-rate hydraulic fracturing in underground coal mines. Laboratory experiments yielded the mechanical parameters of coal in the study area and facilitated the fitting of the intermediate principal stress coefficient. Leveraging these datasets, the study probes into the interaction between hydraulic loads and damage radius under assorted influence ranges, porosity, far-field crustal stresses, and brittle damage coefficients. The findings underscore that hydraulic load escalates exponentially with the damage radius. Within the variable range of geological conditions in the test area, the effects of varying influence range, porosity level, far-field stress, and brittle damage coefficient on the outcomes intensify one by one; a larger hydraulic load diminishes the impact of far-field stress variations on the damage radius, inversely to the influence range, porosity, and brittle damage. The damage radius derived through the gas pressure reduction method in field applications corroborates the theoretical calculations, affirming the precision of the theoretical model. These findings render pivotal guidance for the design and efficacy assessment of small-scale hydraulic fracturing in underground coal mines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call