Abstract

To investigate the extent of damage and seepage characteristics of water-saturated coal samples after subjecting them to microwave cycling. The microwave equipment was used to process the coal samples by microwave cycling. The non-contact digital image processing technology and acoustic emission system were used to carry out the triaxial loading experimental study of the coal samples to obtain the mechanical parameter characteristics, energy evolution pattern, acoustic emission information and permeability characteristics of coal samples under different microwave cycle times. The results of the study show that: With the increase in the number of microwave cycles, dense grid-loaded cracks gradually appeared on the surface of the coal samples, the triaxial partial stresses of the coal samples decreased, and the strains also decreased, and the modulus of elasticity and Poisson’s ratio also decreased; In the densification stage stage, the dissipated energy is higher than the elastic energy, and as the elastic stage proceeds, the elastic energy gradually reverses to exceed the dissipated energy, and the total energy and elastic energy of the coal samples decrease with the increase in the number of cycles, and the dissipated energy rises; Coal samples produce a large number of fissures due to the increase in the number of microwave cycles, the more frequent the fissure activity during the loading process, the acoustic emission amplitude and ringing count scattering points all become dense with the increase in the number of cycles, and the data increase; Initial permeability, destructive permeability and average permeability were all increased, microwave treatment has a better effect of permeability enhancement, the permeability of the treated coal samples was changed from low permeability to medium permeability, and the permeability enhancement was the largest in 6 cycles, and the permeability was increased by 7.18 times. This article explores the damage condition of water-saturated coal samples under microwave cycling treatment. Then, it explores the effect of microwave cycling on the permeability enhancement of the coal body, which provides a new method for exploring the gas permeability enhancement and extraction of low-permeability coal samples underground.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.