Abstract

The crystal structure transition of syndiotactic polystyrene film from the helical conformation to the more stable planar zigzag conformation during a heating process was studied using Fourier transform infrared (FT-IR) spectroscopy in combination with two-dimensional (2D) correlation analysis and perturbation-correlation moving-window 2D analysis. The sequence of different conformations during the transition was investigated by analyzing two-dimensional FT-IR correlation spectra in the spectral ranges of 800-700 cm(-1) and 600-500 cm(-1). It was observed that the conformation of delta helical changes prior to gamma helical, and the gamma helical phase is faster than the alpha' planar zigzag phase. By utilizing the 2D asynchronous correlation spectra, the 744 cm(-1) band, which is usually incorporated in the broad 750 cm(-1) band, can now be uniquely attributed as the alpha' zigzag configuration for the first time. Furthermore, by employing thermal perturbation, the shorter helical segments consisting of m = 7-12 and m = 12-20 monomeric units were disturbed in a shorter time than the longer helical segments m = 20-30 during the heating process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call