Abstract

Titanium powder was rapidly solidified by using shock-wave consolidation technique. The critical parameters were controlled by intrumented detonics and pin-oscillography. The compacted specimens were investigated for crystal structure and microstructural strengthening by using standard diagnostic techniques. The density of the final product was found to be greater than 96% of the theoretical value. X-ray diffraction pattern reveals intact crystalline structure without the presence of any undesired phases. The particle size reduction indicated by XRD was supported by laser diffraction based particle size analyzer. Results from energy dispersive spectroscopy ruled out the possibility of any segregation within the compacts. Scanning electron microscopy showed crack-free, voids-free, melt-free, fracture-less compacts of titanium with a unidirectional dendrite orientation without any grain-growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call