Abstract

The implementation of China’s ex situ poverty alleviation and relocation project has alleviated the further deterioration of the ecological environment in the relocation area. It can create favorable conditions for the management of ecological problems such as the natural restoration of rocky desertification and soil erosion. Panzhou City, Guizhou Province, is one of the key areas for the implementation of ex situ poverty alleviation and relocation projects in the 13th Five-Year Plan for China’s National Economic and Social Development. The typical ecological problem of karst rocky desertification is an important factor hindering the sustainable development of local society, economy, and ecology. Based on the five-phase remote sensing images and relocated population data, the dynamic change rate, transition matrix, and coupling coordination degree model are utilized to analyze the spatiotemporal changes in rocky desertification in Panzhou City. Meanwhile, the cellular automata (CA) Markov model is used to simulate its future scenarios of rocky desertification. The results show that (i) over the past 20 years, the vegetation coverage in Panzhou has generally increased. The implementation of the ex situ poverty alleviation and relocation project has significantly promoted the reduction of the area and degree of rocky desertification. After relocation (2015–2020), the positive improvement rate of rocky desertification accelerated. (ii) After relocation, the potential rocky desertification (PRD), light rocky desertification (LRD), medium rocky desertification (MRD), severe rocky desertification (SRD), and extreme severe rocky desertification (ESRD) showed a trend of transition to the no rocky desertification (NRD). The improvement effect of rocky desertification is remarkable, and the main contribution is from the PRD and LRD. (iii) The greater the relocation intensity is, the more obvious the improvement effect of the rocky desertification area is, and the higher the corresponding coupling coordination level is. The coupling coordination between LRD and relocation intensity is the highest. (iiii) The forecast results show that by 2025 and 2035, rocky desertification in Panzhou will continue to improve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call