Abstract

To investigate the correlation of glucosylceramide synthase (GCS) gene and multidrug resistance 1 (MDR1) gene in inducing multidrug resistance in human multidrug-resistant K562/A02 cell line, and search for a novel strategy for reversing multidrug resistance of leukemia cells. The expression levels of GCS and MDR1 mRNA in K562 and K562/A02 cells were assayed by RT-PCR. siRNAs targeting the GCS and MDR1 gene were transfected into K562/A02 cells with liposome, respectively. The differential expression of GCS and MDR1 mRNAs, as well as their correlation, were detected by RT-PCR and real time quantitative-PCR(QPCR). The expression level of GCS and MDR1 mRNA was dramatically lower in drug-sensitive K562 cells compared with the K562/A02 cells. The GCS mRNA was inhibited by 73%(59%-82%) and MDR1 mRNA expression was down regulated by 67% (38%-82%) in K562/A02 cells after being transfected with GCS siRNA. The expression level of MDR1 mRNA was inhibited by 81%(63%-91%) and GCS mRNA expression had no apparent change in K562/A02 cells treated with MDR1 small interference RNA(siRNA). Positive correlation was detected between the expression of GCS and MDR1 mRNA in K562/A02 cells and MDR1 mRNA expression was down regulated after silencing the GCS gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call