Abstract

Dry–wet cycling has a significant impact on the mechanical properties of rocks, and a series of problems such as rock collapse can occur in rock masses under long-term dry–wet cycling. Based on this, some mechanical tests were carried out on sandstone under different dry–wet cycles to analyze the evolution law of its physical and mechanical parameters. The results show that the internal connection of the mineral becomes looser, the drying quality of the sample decreases, and the water absorption quality increases gradually under different dry–wet cycles. The peak strength of the sample decreases first and then increases with increasing dry–wet cycles. The change trend of the elastic modulus and deformation modulus with the increase in dry–wet cycles are similar to the peak strength, which is mainly related to the change in the connection between particles. Furthermore, the specimens showed axial tensile failure under uniaxial action. With the increase in dry–wet cycles, the tensile crack on the surface of the specimen increased, and the fracture of the specimen became looser. The specimen exhibited block spalling when the number of dry–wet cycles was eight times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.