Abstract

Nanosized TiO2 photocatalysis technology is one of the most promising technologies for the treatment of wastewater containing azo dyes. In this work, TiO2 was deposited on a mesoporous SBA-15 molecular sieve by chemical deposition, and rare earth (RE) metal neodymium (Nd) was further deposited on the surface of the catalyst to obtain an Nd–TiO2–SBA-15 photocatalyst. The prepared photocatalyst was analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and N2 adsorption–desorption. The activity of the Nd–TiO2–SBA-15 photocatalyst was evaluated by using methyl orange to represent the azo dye. The effects of different Nd deposition amounts and different solution pH values on the photocatalyst performance were principally studied. The results show that the synthesized photocatalyst formed an anatase crystal with a mesoporous structure. The specific surface area and pore size of the photocatalyst are 548.2 m2/g and 6.5 nm, respectively. As the amount of Nd deposition gradually increases, the activity of photocatalyst undergoes a process of first rising and then decreasing. In addition, the photocatalyst maintains high photocatalytic activity in the pH range of 2–10, exhibiting good acid–base adaptability. This work demonstrates that the Nd–TiO2–SBA–15 nanophotocatalyst has broad practical application prospects on a large scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.