Abstract

Comparing to orthogonal localized molecular orbitals (OLMO), the nonorthogonal localized molecular orbitals (NOLMO) exhibit bonding pictures more accordant with those in the traditional chemistry. They are more contracted, so that they have a better transferability and better performances for the calculation of election correlation energies and for the linear scaling algorithms of large systems. The satisfactory NOLMOs should be as contracted as possible while their shapes and spatial distribution keep in accordance with the traditional chemical bonding picture. It is found that the spread of NOLMOs is a monotonic decreasing function of their orthogonality, and it may reduce to any extent as the orthogonality descends. However, when the orthogonality descends to some point, the shapes and spatial distribution of the NOLMOs deviate drastically from the traditional chemical bonding picture, and finally the NOLMOs tend to linear dependence. Without the requirement of orthogonalization, some other constraints have to be imposed for constructing satisfactory NOLMOs by minimizing their spread functional. It is shown that satisfactory results can be generated by coupling the minimization of orbital spread functionals with the maximization of the distances between orbital centroids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.