Abstract

This study investigates the thermophysical and combustion characteristics of ethanol-based nanofuels incorporating aluminum (Al) and nickel-coated aluminum (Ni-Al). The nanofuels are prepared with varying concentrations of Al and Ni-Al nanoparticles. The results reveal that, despite the non-uniform deposition of nickel on Al particles, a sintering reaction occurs between the two materials. Nanofuels containing Al exhibit unburned Al residues after combustion, while nanofuels containing Ni-Al show intense AlO radical emission during combustion termination, indicating enhanced combustion. However, nanofuels containing Ni-Al demonstrate a lower burning rate compared to Al nanofuels, attributed to the lower thermal conductivity of nickel. Overall, the findings suggest that nanofuels containing Ni-Al possess higher energy potential but extended combustion duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.