Abstract

Mixtures of diglycidylether of bisphenol A (DGEBA) resin and commercially available hyperbranched polyester (HBP) Boltorn H30 were cured by anhydride to covalently bond the hydroxyl end groups in HBP with the epoxy resin. The curing mixtures were investigated by Differential Scanning Calorimetry (DSC) to study the curing evolution and to evaluate the kinetic parameters. DSC studies suggested that HBP could increase the curing rate of epoxy/anhydride systems at low conversions, but it produced a decelerative effect in the last stages of the curing. The influence of the HBP content and the proportion of anhydride on the curing conversions were discussed in detail. The addition of a tertiary amine was proved to decrease the curing temperatures. By Fourier Transform Infrared Spectroscopy (FTIR) the reaction of hydroxyl groups during the whole process was confirmed. By the determination of the conversion at the gelation, we could prove that it increased on increasing the proportion of HBP in the reactive mixture. By Thermomechanical Analysis (TMA) we could determine a reduction of the shrinkage after gelation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call