Abstract

Three-dimensional (3D) ultrasonic vibration-assisted ELID grinding, which combines 3D ultrasonic vibration-assistance with electrolytic in-process grinding wheel dressing (ELID), is a compound process that is designed to achieve high-efficiency precision machining. A grinding force model of 3D ultrasonic vibration-assisted ELID grinding was first developed on the basis of the kinematics of a single grit particle and was verified through experimentation. The surface quality then was observed using white light interference profiling. It was demonstrated during the present investigation that the grinding force during 3D ultrasonic vibration-assisted ELID grinding was approximately 20 %~30 % lower than that of two-dimensional (2D) ultrasonic vibration-assisted ELID grinding. In addition, the surface roughness (Ra) achieved during 3D ultrasonic vibration-assisted ELID grinding was approximately 40 %~50 % smoother than was achieved under 2D ultrasonic vibration-assisted ELID, and thus 3D ultrasonic vibration-assisted ELID grinding can achieve better surface quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call