Abstract

Radon is of great significance as a tracer for the detection of coal fires due to its distinct variations in radon exhalation properties while heating. The research on radon exhalation performance through pore structure is still in its early stages. In this paper, the pore structure and radon exhalation characteristics of heat-treated limestone are studied using indoor tests such as nuclear magnetic and radon measurements. The study's results demonstrate that the radon exhalation rate of limestone initially increases gradually, followed by a steady decline and subsequent increase with the increase in temperature. The radon exhalation rate at 800 °C reaches 2.42 times that at room temperature. The pore structure change within limestone strongly correlates with the radon exhalation rate. The pore volume of micropores (<0.1 μm) plays an essential role in the radon exhalation capacity, which is directly related to the fractal dimension of micropore structure in the heated limestone. The study's findings can be used to identify coal fires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.