Abstract

The large scale and long calculation times are unavoidable problems in modeling honeycomb structures with large sizes and dense cells. The cell magnification equivalent is the main method to solve those problems. This study finds that honeycomb structures with the same thickness-to-length ratios have the same mechanical properties and energy absorption characteristics. The improved equivalent finite element models of honeycomb structures with the same thickness-to-length ratios were established and validated by experiments. Based on the validated finite element model of the equivalent honeycomb structures, the out-of-plane compression behaviors of honeycomb structures were analyzed by LS-DYNA software. The results show that the performance of honeycomb structures is not equivalent before and after cell magnification. Thus, the cell magnification results were further subjected to CORA (correlation analysis) to determine the magnification time and prove the accuracy of the cell magnification time through drop-weight impact tests. In addition, a first-order decay exponential function (ExpDec1) for predicting cell magnification time was obtained by analyzing the relationship between the cell wall length and the cell magnification time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.