Abstract

As one of the commonly found tracer gas to evaluate the air quality, high concentration of carbon dioxide (CO2) can cause exhaustion and drowsiness in enclosed spaces, especially those environments with very limited spaces, such as aircraft cabins. The phenomenon that CO2 concentration keeps high due to the eddy airflow in some certain zones is named the CO2 lockup phenomenon in this study. This CO2 lockup phenomenon has not been clearly identified in previous research in relation to air quality in aircraft cabins. This paper presents the numerical study on the CO2 lockup phenomenon in aircraft cabins. Firstly, the airflow, temperature and sulfur hexafluoride (SF6) concentration fields in a simulated aircraft cabin mock-up with seven rows were numerically calculated by computational fluid dynamics (CFD) approach and then the results were compared with the experimental data to verify the reliability of the numerical methods. Secondly, the air velocity and CO2 concentration distribution were further calculated in two aircraft cabin mock-ups (i.e. Boeing 737-200 and Airbus A330-300) to investigate the CO2 lockup phenomenon. Finally, different ventilation strategies were numerically tested by changing air supply velocity and direction to optimize the ventilation scheme for the purpose of reducing the impact of the CO2 lockup phenomenon and improving air quality in aircraft cabins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call