Abstract

In this paper, sisal fibers (SF) reinforced cellulose acetate composites were prepared using twin-screw extrusion followed by hot-press moulding technology. Both the mechanical properties and the biodegradable rate of the composite were investigated in terms of effect of initial length and mass content percentage of sisal fiber on. The results showed that the fibers tended to be shorter and thinner during the processing of twin-screw blending and the tensile and flexure strength of composites were enhanced, with the content or initial length of sisal fibers increasing. Furthermore, the biodegradation rate of the composite was forward at first, and gradually became slow in later period and then leveled off finally. In addition, Micro-morphologies of the fracture surface of the composite were visualized by scanning electron microscopy (SEM) to analyze the effect of initial length and content of sisal fibers on interfacial adhesion and the distribution of sisal fibers in the composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.