Abstract

Ripening agents can accelerate the ripening of fruits and maintain a similar appearance to naturally ripe fruits, but the fruit flavor and quality will be changed compared to naturally ripe fruits. To find an efficient detection method to distinguish whether crab apples were artificial ripened, the naturally ripe and artificially ripe fruits were detected and analyzed using the electronic nose (e-nose) technique in this study. The fruit quality indexes of samples were determined by the traditional method as a reference. Significant differences were found between naturally ripe and artificially ripe fruits based on the analysis of soluble sugar content, titratable acidity content, sugar–acid ratio, soluble protein content, and soluble solids content. In addition, principal component analysis (PCA), linear discriminant analysis (LDA), support vector machine (SVM), and random forest (RF) analyses were performed on the electrical signals generated by the electronic nose sensor, respectively. The results showed that the RF is the best recognition algorithm for distinguishing which crab apples were naturally ripe or artificially ripe; the average recognition accuracy is 98.3%. On the other hand, the prediction models between the e-nose response data and fruit quality indexes were constructed by partial least squares regression (PLSR), which showed that the feature value of e-nose response curves extracted by wavelet transform was highly correlated with the quality indexes of fruits, the determination coefficients (R2) of regression models were higher than 0.91. The results demonstrated that the detection technology with an electronic nose could be used to test whether the fruit of the crab apple was artificially ripe, which is an economical and efficient method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call