Abstract
In order to study the mechanical characteristics and seepage mechanism of the structural plane under the action of seepage water pressure, the shear–seepage coupling test was carried out. It was found that with an increase in seepage water pressure, the peak shear strength, and shear stiffness of the structural plane decreased, while the peak dilatancy angle, average dilatancy angle, peak shear displacement, initial flow rate, and peak flow rate increased. The profile JRC and 3D morphology parameters under different Y values increased as seepage water pressure increased, indicating that the wear degree of the structural plane decreased. The contact area, effective aperture, average aperture, and hydraulic aperture of the structural plane all increased in phase with the increase in shear displacement, and they all increased in trend with the increase in seepage water pressure. The distribution and evolution law of the structural plane aperture were analyzed by programming using scanning point cloud data and the normal displacement value of the structure plane. It was concluded that the aperture gradually increased with the increase in seepage water pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.