Abstract

Ethnopharmacological relevanceErigeron breviscapus is a common medicine of eight ethnic minorities, including Miao, Naxi, and Yi. As early as the Ming Dynasty (AD 1368–1644), Lanmao's Materia Medica of Southern Yunnan (AD 1436) recorded that the medicine is used for the treatment of “Zuo tan you huan.” In modern pharmacological research, Erigeron breviscapus injection is the most commonly used preparation in the treatment of ischemic stroke caused by acute cerebral infarction, but its mechanism of action in the treatment of ischemic stroke is not well understood. Aim of the studyIn this study, a metabonomics study based on ultraperformance liquid chromatography–quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) was used in investigating the effect of a traditional Chinese medicine preparation Erigeron breviscapus injection on the rat model of focal cerebral ischemia-reperfusion and the affinity of its main components with the targets of mitochondrial apoptotic pathways. Materials and methodsThis study used molecular docking technology to verify the effective binding ability of main effective components of Erigeron breviscapus injection to target proteins related to mitochondrial apoptosis pathway. This study developed a metabonomics method based on the ultra-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC Q-TOF MS) to evaluate the efficacy and study the mechanism of traditional Chinese medicine preparation. With pattern recognition analysis (principal component analysis and partial least squares-discriminate analysis) of urinary metabolites, a clear separation of focal cerebral ischemia-reperfusion model group and healthy control group was achieved. ResultsErigeron breviscapus injection can significantly reduce the area of cerebral infarction, improve tissue morphological lesion in rats, and can increase the number of Nissl bodies. It may be a promoting factor by inhibiting hippocampal nerve cell apoptosis and Bax protein expression and by exerting effects against ischemia reperfusion after the induction of apoptosis. Thus, it plays a role in brain protection. Moreover, it can considerably promote the recovery of neurological deficiency signs in advance. Meanwhile, Erigeron breviscapus decreased malondialdehyde content and T-NOS activity. Its curative effect from strong to weak order: low dose > high dose > medium dose. The representative components of Erigeron breviscapus have good affinity with the active sites of mitochondrial apoptosis-related proteins. Metabolomics found that the potential biomarkers regulated by breviscapine are kynurequinolinic acid, succinylornithine, and leucine proline. It is speculated that it may participate in TRP–kynurequinolinic acid and succinylornithine–urea cycle–NO metabolic pathways. ConclusionsThis paper revealed the potential biomarkers and metabolic pathways regulated by Erigeron breviscapus. It was speculated that the mechanism is related to its inhibition of mitochondrion-mediated apoptosis. Erigeron breviscapus could restore the metabolic profiles of the model animals to normal animal levels. The mechanism may be related to the potential biomarkers of quinolinic acid, succinylornithine, and leucine proline and the metabolic pathways involved. However, the exact mechanism by which Erigeron breviscapus inhibits mitochondrion-mediated apoptosis remains to be further explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call