Abstract

Reversible solid oxide cell (R-SOC) has been attracting considerable attention as a technology capable of power generation and CO2 electrolysis. In addition to new material development, innovation in structural design is also a decisive factor. In this study, a 4-channel micro-monolithic design, in the form of a tear-drop inner channel structure, was successfully developed. The micro-monolith obtained includes plurality of micro-channels growing from multiple directions and spongy active regions near the exterior surface. Uniquely, the irregular tear-drop inner channels further increase the proportion of the electrochemically active region to the overall circumference, achieving more efficient utilization of the geometric surface area. Such micro-structured cells with Ni-YSZ/YSZ/YSZ-LSM materials exhibited effective performance in the reversible operation of R-SOC. A superior performance of 1.20 W·cm−2 at 800 ℃ for H2 fuel cell was demonstrated. Similarly, during the electrolysis of CO2, current density recorded by the cells reached 1.20 A·cm−2 at 1.5 V and 800 ℃, which is competitive compared with the values of the previous design investigations. Relatively low diffusion polarization shown in electrochemical impedance spectroscopy (EIS) suggests that this is due to the very gas transfer resistance in the fuel electrode. This novel multi-channel micro-monolithic structure shows a potential to substitute the conventional tubular counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.