Abstract
Slow swelling and shrinking rates are a significant challenge for some applications of temperature-sensitive hydrogels. This study reports raspberry-form poly N,N-diethylacrylamide (DEAA) gel particles, which are aggregates of single spherical gel particles. The raspberry-form gel particles show improved temperature-response rates especially for swelling. This improvement in the response rate is attributed to two key factors: the free space between the individual gel particles that make up the aggregated gel particle, and the constraints from the contact points between the individual gel particles. During the swelling process, the polymer chain networks can diffuse at the faster rate characteristic of the individual gel particles constructing the raspberry-form gel, and consequently the response rate of the overall raspberry-form gels can be accelerated. During the shrinking process, the constraints from the contact points between the individual gels dominate the polymer chain diffusion and the shrinking rate because of non-zero shear modulus. The shrinking behavior was affected not by the individual particle size, but rather the apparent gel size and shape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.