Abstract

PurposeThe purpose of this paper is to study the wear of railway brake disc/pad in low-temperature environment and to explore the damage form of brake disc/pad materials and the law of temperature rise in braking process and its influence on friction pair material damage.Design/methodology/approachThe influence of ambient temperature on tribological properties of brake materials was studied by using low-temperature environment simulation device and MM-1000 high-speed brake testing machine. The law of temperature rise in the braking process was simulated by temperature field module of COMSOL.FindingsThe damage of disc sample increases with the decrease of ambient temperature, and the main damage form is furrow. With the decrease of ambient temperature, pitting corrosion, wear, spalling and cracks appear successively. The maximum temperature of brake disc decreases linearly with the decrease of ambient temperature. However, when the ambient temperature is 0 in the experiment, the surface temperature of the disc will increase abnormally because of the increase of abrasive particles caused by the toughening and brittleness transformation of the material.Originality/valueIn this paper, through the study of train braking in low-temperature environment, the damage mechanism and law of train braking pair in low-temperature environment are found, which provide some basis for the development of high-speed railway in low-temperature environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.