Abstract

Spherical fuel elements with a diameter of 60mm are basic units of the nuclear fuel for the pebble-bed high temperature gas-cooled reactor (HTR). Each fuel element is treated as a graphite matrix containing around 10,000 randomly distributed fuel particles. The essential safety concept of the pebble-bed HTR is based on the objective that maximum temperature of the fuel particles does not exceed the design value. In this paper, a microstructure-based boundary element model is proposed for the large-scale thermal analysis of a spherical fuel element. This model presents detailed structural information of a large number of coated fuel particles dispersed in a spherical graphite matrix in order that temperature distributions at the level of fuel particles can be evaluated. The model is meshed with boundary elements in conjunction with the fast multipole method (FMM) in order that such large-scale computation is performed only in a personal desktop computer. Taking advantage of the fact that fuel particles are of the same shape, a similar sub-domain approach is used to establish the temperature translation mechanism between various layers of each fuel particle and to simplify the associated boundary element formulation. The numerical results demonstrate large-scale capacity of the proposed method for the multi-level temperature evaluation of the pebble-bed HTR fuel elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.