Abstract

PurposeThe purpose of this paper is to study the temperature cycling reliability of Sn-5Sb-0.5Cu-0.1Ni-0.5Ag/Cu micro solder joints compared with Sn-5Sb/Cu and SAC305/Cu micro solder joints, which has important engineering and theoretical significance for the research of micro solder joint reliability. This paper also aims to provide guidance for the selection of solder for third-generation semiconductor power device packaging.Design/methodology/approachThe shear strength, plasticity, bulk solder hardness and creep performance of three kinds of micro solder joints before and after temperature cycling were studied by nanoindentation and micro shear experiments. Scanning electron microscopy and energy dispersive spectrometry were used to analyze the fracture mode, fracture position and compound composition of the solder joints.FindingsThe bulk solder hardnesses and shear strengths of Sn-5Sb-0.5Cu-0.1Ni-0.5Ag/Cu solder joints were higher than those of Sn-5Sb/Cu and SAC305/Cu solder joints before and after temperature cycling. The indentation depth, creep displacement and creep rate of bulk solders of Sn-5Sb-0.5Cu-0.1Ni-0.5Ag/Cu solder joints were the smallest compared with those of Sn-5Sb/Cu and SAC305/Cu solder joints after the same number of cycles. In addition, the fracture mode and fracture position of the micro solder joints changed before and after temperature cycling.Originality/valueA new type of solder was developed with excellent temperature cycling performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call