Abstract

Sustainable water use of the Haihe River Basin is studied by using the ecological network analysis (ENA) approach. Two related aspects including socioeconomic and environmental water uses sustainability and network organization inherent in system structures are analyzed. For the study of sustainable water use from each single aspect including water use intensity, water use pressure, and environmental protection, a series of new indicators termed as total system throughput water use intensity (TSTUI), total system throughput pressure (TSTP), and environmental flow indicator (EFI) are set up by incorporating parameters of GDP, population, and environmental flow. Based on these three indices, a new integrated index, intensity-pressure-environment (IPE) is established for synthesized measure of sustainable socioeconomic and environmental water uses. The indices of ascendency and overhead are applied for analyzing and characterizing water use network organization. The four subbasins of the Haihe River during 1999–2002 and 2005–2007 are studied. The results show that (i) the water use intensity in subbasin II is the best, while that in subbasins I and III are the worst; (ii) subbasin II and subbasins I and III suffer the highest and lowest water use pressure, respectively; (iii) the environmental flow situations in subbasins II and III are the worst and that of subbasin I is the best; (iv) as for the integrated socioeconomic and environmental water uses sustainability, subbasin III is the best, and subbasins I and IV are the worst; (v) the organization level of subbasin I is better than the others’, in which that of subbasin IV is the worst. It can be concluded that the application of ENA in sustainable water use study can provide new angles for water resources management to address the challenges of assessing and optimizing options to obtain more sustainable water use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.