Abstract

The abrasive jet finishing process with wheel as restraint is a kind of compound precision finishing process that combined grinding with abrasive jet machining, in which inject slurry of abrasive and liquid solvent to grinding zone between grinding wheel and work surface under no radial feed condition when workpiece grinding were accomplished. The abrasive particles are driven and energized by the rotating grinding wheel and liquid hydrodynamic pressure and increased slurry speed between grinding wheel and work surface to achieve micro removal machining. The micro removal machining with grinding wheel as restraint, not only to attain higher surface form accuracy but also to can acquire efficiently defect-free finishing surface with Ra0.15~ 1.6μm and finally achieve high efficiency, high precision and low roughness values, furthermore, integrating grinding process and abrasive jet process into one features. In the paper, surface topography and tribological characteristics finished by abrasive jet with grinding wheel as restraint were analyzed. Experiments were performed with plane grinder M7120 and workpiece material Q235A. The machined surface morphology was studied using SEM and the microscope and microcosmic geometry parameters were measured with TALSURF5 instrument. The experimental results show that microcosmic geometry parameter values were diminished comparing with ground surface. The tribological characteristics of finished surface were also investigated with pin on disk wear tester of MG-2000. The experimental results show that the friction coefficient and wear amounts of finishing machining surface were obviously decreased comparing with ground surface. As a result, life and precision consistency of finished workpiece were improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.