Abstract

Pulsed lasers are a powerful tool for fabricating silicon carbide (SiC) that has a hard and brittle nature, but oxidation is usually unavoidable. This study presents an exploration of the oxidation mechanism of 4H-SiC in oxygen and water under different temperatures via reactive force field molecular dynamics. Single pulse irradiation experiments were conducted to study the oxygen content of the laser-affected zone through energy dispersive x-ray spectrometry. The results show that laser-induced thermal oxidation is a complex dynamic process with the interactions among H, C, O, and Si atoms. The oxidation zone includes an oxide layer, a graphite layer, and a C-rich layer. With an increase in oxygen concentration, the amorphous oxide layer changes from silicon oxide to silicon dioxide. In addition, the formation of carbon clusters at the interface between SiOx and C-rich layers promotes the desorption of the oxide layer. The mechanism revealed in this study provides theoretical guidance for high-quality processing of 4H-SiC at atomic and close-to-atomic scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.