Abstract

Due to its excellent strength, plasticity, and fracture toughness, titanium alloy has been widely used in the aerospace field. The specificity of its application environment places high demands on the surface quality of titanium alloy. In this paper, we study the effects of different lubrication methods on the microscopic topography, surface roughness, and microhardness of titanium alloy TC21 during the milling process. The lubrication methods include dry, high-pressure air cooling, and minimum quantity lubrication (MQL). Compared with dry milling and high-pressure air cooling conditions, the MQL environment can effectively suppress plastic deformation and surface defects of titanium alloy TC21. MQL is significant for improving the milling process of titanium alloy TC21. In addition, a surface roughness model considering milling vibration is developed. According to the results of orthogonal experiments, the prediction accuracy of the surface roughness model is acceptable, and the prediction errors are all below 20%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.