Abstract

Lightweight polymer nanocomposites with excellent processability and chemical resistance have been becoming research focus of electromagnetic interference (EMI) shielding materials. The EMI shielding performance of polymer nanocomposites greatly depends on electrical conductivity, which is in turn determined by the transport efficiency through the conducting network. However, it still remains a great challenge to construct high-quality conducting pathway in polymer matrices with least filler content by matrix-filler interface and rational structural design. Research on the key scientific issues of polymer nanocomposites was conducted, and some interesting results were achieved, including: (1) Several approaches for the design and tailoring of filler dispersion and matrix-filler interfaces were developed and a series of high-performance electrically conductive polymer nanocomposites with low percolation threshold were successfully prepared; (2) Some routes for constructing preformed three-dimensional architectures for conductance/shielding were proposed, facilitating the structural and functional integration design of polymer nanocomposites; (3) The construction of multi-interface structures in polymer nanocomposite enables the balance of high EMI shielding performance and lightweight feature. This perspective summarizes our recent research advances, and forecasts the future challenges and opportunities of polymer nanocomposites for electromagnetic shielding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.