Abstract

There are some impediments to the effective use of conventional flat web steel girders such as poor web stability and low buckling strength. To overcome these kinds of problems, the idea of using steel corrugated webs to bridge girders has been introduced to get enhanced web stability and buckling strength. The existing studies on bridge girders with steel corrugated webs are focused on single corrugated web girders. According to previous researches, large forces generated on the girders result in buckling of single corrugated web. This paper focuses on Double corrugated web girders. The Double corrugated web girders can be strengthen either by providing stiffeners along with the corrugated web or by making the web as a composite one. This paper consists of buckling investigations on Double Corrugated Stiffened Steel Web Non-prismatic girders (DCSSWG) consist of two stiffened corrugated steel webs with steel flat flanges and also on Double Corrugated Composite Web Non-prismatic girders (DCCWG) having Ultra-Lightweight Cement Composite fill (ULCC) in the space between two corrugated steel webs. Buckling performance of Non-prismatic girders with Double Corrugated Stiffened Steel Webs and Double Corrugated Composite Webs having different tapered ratios are investigated using ANSYS 16.1 software. The results obtained from the study have shown that Non prismatic girders with Double Corrugated Composite Webs show more buckling strength as compared to Double Corrugated Stiffened Steel Webs for the same tapered ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.