Abstract

Ternary thin films are attractive for many applications due to their band gap tunability. In the present study, the stoichiometric n-PbxZn1-xS (x=0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1) thin films were deposited on glass substrates using spray pyrolysis technique. The structural, optical and electrical studies have been carried out in order to understand the band gap tunability of prepared films. The XRD analysis confirmed that the prepared films were polycrystalline in nature with cubic structure. The substitution of zinc into the lead sulphide lattice led to decrease in the crystallite size, and the orientation of the films changed from (200) to (111) plane. SEM images clearly showed a modification in the morphology of the films from nano size particle to network structure due to Zn ion substitution. The optical band gap energy of PbxZn1-xS thin films varied from 0.40eV to 3.54eV and the transition has been changed from indirect to direct with the substitution of zinc into the lead lattice site. The resistivity and activation energy of the films were increased with increase in the band gap. The results confirm the formation of a continues solid solution of PbS and ZnS in the ternary phase which can be a suitable candidate for optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call