Abstract

The stress corrosion sensitivities of 25Cr2Ni2MoV, 26NiCrMoV10-10 and 30Cr2Ni4MoV low-pressure rotor steels in simulated nuclear steam turbine operation condition were investigated by slow strain rate test (SSRT), and the stress corrosion cracking (SCC) mechanisms were studied by optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Results revealed that the SCC sensitivity of 25Cr2Ni2MoV steel was highest in 3.5wt.%NaCl solution at 180°C, while the SCC sensitivity of 26NiCrMoV10-10 steel and 30Cr2Ni4MoV steel are similar. The SCC sensitivity of CrNiMoV steam turbine rotor steels could be decreased by the increase of Ni element and the decline of mechanical intensity. Cracks initiate from metal surface and then propagate to the inner metal, which showed a form of transgranular cracking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.