Abstract

The static and dynamic voltage distribution characteristics and voltage sharing design of a 126-kV modular triple-break vacuum circuit breaker (VCB) was discussed in this paper. The finite-element method and power frequency tests were used to calculate and verify the static voltage distribution ratios and distributed capacitance parameters of multi-break VCBs, respectively. A model combining the post arc current model and equivalent capacitance model was proposed for simulations of dynamic transient recovery voltage (TRV) distribution characteristics of the triple-break VCB. The simulation results indicated that besides the stray capacitances, the TRV sharing design should take the influence of residual charge (RC) into account, and the influence of RC on the TRV distribution is relevant to the differences of RC parameters among the series interrupters. Therefore, the appropriate value of grading capacitors should meet the requirement of the worst case. Based on the investigation of this paper, a 126 kV U-shaped triple-break VCB prototype with 1000 pF grading capacitors has been produced, and the successful large current breaking tests indicate the good breaking capacity and suitable voltage sharing design of the triple-break VCB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call