Abstract

A precise investigation of the stability of the boiling two-phase flow of magnetic fluid under a nonuniform magnetic field is conducted in relation to the development of a new energy conversion system. First, governing equations of boiling two-phase flow based on the unsteady thermal nonequilibrium two-fluid model are presented and analytically solved using a linearization method. Then the analytical results of magnetic stabilization are inspected experimentally by flow visualization and image processing techniques using an experimental apparatus composed of a small test loop. From the theoretical and experimental studies on the stability of boiling two-phase flow of magnetic fluid, the stabilization of two-phase flow is achieved due to the magnetic force of the fluid and appropriate superficial gas-phase velocity. Also, it is clarified both theoretically and experimentally that the axial magnetic field more effectively stabilizes the two-phase magnetic fluid flow than the transverse magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call