Abstract

Aiming at emotion deficiency in present E-Learning system, speech emotion recognition system is proposed in the paper. A corpus of emotional speech from various subjects, speaking different languages is collected for developing and testing the feasibility of the system. The potential prosodic features are first identified and extracted from the speech data. Then we introduce a systematic feature selection approach which involves the application of Sequential Forward Selection (SFS) with a General Regression Neural Network (GRNN) in conjunction with a consistency-based selection method. The selected features are employed as the input to a Modular Neural Network (MNN) to realize the classification of emotions. Our simulation experiment results show that the proposed system gives high recognition performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.