Abstract

Benggang with steep collapsing walls is one of the worst soil erosion problems in South China. The collapse of walls is the most critical process in Benggang development. This is mainly due to the soil water properties. The soil water characteristic curve (SWCC) is a key indicator for analyzing soil moisture, but the SWCC and its mechanism of influence in collapsing walls remain obscure. A pressure plate meter was used for drying experiments to research the SWCCs of undisturbed soils of five layers (from top to bottom: red soil layer, transition layer I, sand soil layer, transition layer II and detrital layer) of two typical collapsing walls. The van Genuchten (VG) model can be fitted to the SWCCs for different layers (NSE ≥ 0.90). With increasing soil depth, the parameters a and θs first decreased and then increased, the parameters n first increased and then decreased, θr declined as the soil depth increased. These findings illustrate that soil water holding capacity decreases with increasing soil depth. The bottom of the soil is weak in water retention and water can easily reach saturation, resulting in a decline in soil stability, thus promoting soil collapse and finally inducing upper soil collapse. Furthermore, gravel content and particle morphology are factors that should not be neglected for SWCCs. The results of this study provide a theoretical basis for understanding the process of wall collapse in Benggang landforms in South China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.