Abstract
Due to its high efficiency and good environmental performance, solid oxide fuel cell (SOFC) system is very attractive for future power generation, especially integrated with the conventional power generation system. However, how to effectively integrate SOFC with the conventional thermal power system and build the hybrid system with high efficiency is still a research focus. This paper studies a novel SOFC-IGCC (integrated gasification combined cycle) hybrid power system with high efficiency. On the base of the integration idea of total energy system, a novel SOFC-IGCC hybrid power system is proposed in this paper. The energy conversion mechanism of SOFC from chemical energy to electrical energy is analyzed. The maximum potential of improving the total system performance is also analyzed. The system characteristics of the hybrid system have been studied. The optimal rules of main parameters of hybrid system are revealed. The research results obtained in this paper show that integration with SOFC system will result in a significant performance improve of the total hybrid system. The integration degree of SOFC with IGCC greatly influences the system performance of the hybrid system. Compared with the base IGCC system (the system thermal efficiency is 46%), the efficiency of SOFC-IGCC hybrid system is greatly improved and increased to approximately 52%. The achievements acquired results from this paper will provide a feasible way to develop hybrid power system and valuable information for further study on IGCC system with high efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.