Abstract

GaN HEMT devices are sensitive to the single event effect (SEE) caused by heavy ions, and their reliability affects the safe use of space equipment. In this work, a Ge ion (LET = 37 MeV·cm2/mg) and Bi ion (LET = 98 MeV·cm2/mg) were used to irradiate Cascode GaN power devices by heavy ion accelerator experimental device. The differences of SEE under three conditions: pre-applied electrical stress, different LET values, and gate voltages are studied, and the related damage mechanism is discussed. The experimental results show that the pre-application of electrical stress before radiation leads to an electron de-trapping effect, generating defects within the GaN device. These defects will assist in charge collection so that the drain leakage current of the device will be enhanced. The higher the LET value, the more electron-hole pairs are ionized. Therefore, the charge collected by the drain increases, and the burn-out voltage advances. In the off state, the more negative the gate voltage, the higher the drain voltage of the GaN HEMT device, and the more serious the back-channel effect. This study provides an important theoretical basis for the reliability of GaN power devices in radiation environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.