Abstract

We analytically investigate shear horizontal surface acoustic wave (SH-SAW) propagation in layered piezoelectric structures loaded with viscous liquid, which involves a thin piezoelectric layer imperfectly bonded to an unbounded elastic substrate. The coupling wave equations are obtained based on the linear piezoelectric theory. The governing equations are solved by means of the analytical method with consideration of electrically open and shorted cases, respectively. The dispersive relations are obtained, and the effects of the imperfect constant on the properties of waves are presented and discussed. From the numerical results, we can find that the phase velocity decreases with the increase of the interface parameter n, and for a specified viscosity, the attenuation increases with the interface parameter. The results show that the effects of the imperfect constant on the properties of SH-SAW are remarkable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.