Abstract

To study fracture properties and establish a shear–softening constitutive law for rock–concrete interfaces, direct tension, three-point bending, and single shear push-out tests were conducted on composite rock–concrete specimens with different degrees of interface roughness. The relationships between tensile strength (ft), average shear strength (τav), initial fracture toughness (Kini 1C), mode I fracture energy (GIf) and interfacial roughness were determined based on experimental results. A shear–softening constitutive law for rock–concrete interface was developed by measuring strain variations on rock surfaces under loading stages during single shear push-out tests and defined based on shear strength (τmax) and mode II fracture energy (GIIf). For practical applications, the relationships between τmax and ft and between GIf and GIIf were determined by statistically fitting the experimental data in such a way that shear–softening constitutive law could be conveniently determined simply by measuring ft and GIf parameters of rock–concrete interface. Also, numerical simulations were carried out to investigate crack propagation in rock–concrete interfaces under mixed mode I–II fractures. Predicted load versus crack mouth opening displacement (CMOD) curves agreed well with experimental findings and verified the shear–softening constitutive law for rock–concrete interfaces obtained in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.