Abstract

In this paper, tests and finite element analysis are used to study the shear resistance of cold-formed steel stud walls in low-rise residential structures. Firstly, the shear resistance of cold-formed steel stud walls under monotonic loading is tested. The test models, including walls with single-sided gypsum sheathing, walls with single-sided oriented strand board sheathing, and walls with gypsum sheathing on the back and oriented strand board on the face are made in full scale of engineering project. The test apparatus and test method and the failure process of specimens are introduced in detail. Then, the finite element analysis model of cold-formed steel stud walls considering geometric large deformation and materials nonlinear is presented to study their shear resistance. Walls were simulated as shell elements. The studs and tracks are simply connected. The screws connecting the sheathings to the frame are modeled by coupling methods. The solution method of equations is selected by ANSYS program automatically. Finite element analysis results in this paper are close to that of experiment. The results of test and finite element analysis show that sheathing materials influences the wall's shear resistance more greatly. The strength of steel has a less influence on the shear resistance of walls. As the decrease of stud spacing, height of wall and screw spacing at the perimeter, the walls' load ability increases obviously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.