Abstract
This paper presents a case study of the setpoint tracking performance of the proportional integral derivative (PID) controller on the Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) nonlinear digital plants under Gaussian white noise and constant load disturbance for the nonlinear time-delay dynamic system. With the objective of getting a better understanding of the nonlinear discrete-time PID controller, we proposed a case study using two SISO and two MIMO digital plants, and then do the numerical simulations along with the addition of Gaussian white noise and load disturbance to simulate the real environment. In this paper, we compare the results of the system working with and without noise and load disturbance. The study result of this paper shows that on the discrete-time digital nonlinear plant, the PID controller is working well to follow the nonlinear setpoint even under heavy noise and load disturbance. The study compared the performance indexes of the controllers in terms of the maximum error, the Root mean square error (RMSE), the Integral square error (ISE), the Integral absolute error (IAE), and the Integral of time-weighted absolute error (ITAE).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.