Abstract

The Wenchuan earthquake greatly reduced the forest water conservation capacity along the banks of Minjiang River. With the intensified soil erosion and the rapid increasing sediment transport, the sediment erosion of hydraulic turbines running on the river has become more and more serious, especially of high head Francis turbines. In this study, the k-ε multiphase flow turbulence model was used to calculate the sediment-water flow of a high head Francis turbine with long and short blades in Minjiang River. The distribution pattern of sediment concentration (sediment volume fraction) on the blade surface shows that the sediment particles mainly gather on the outlet edge at 10% of the blade height on the suction surface of the long blade, while the sediment concentration on the surface of the short blade is small. The erosion of the 0Cr13Ni5Mo runner blade was tested by the flow around erosion method, and the erosion amount on the blade surface in the severe erosion area was obtained. Based on the test data of erosion and the numerical calculation results of sediment flow, a formula to calculate the sediment erosion rate of flow passage components with 0Cr13Ni5Mo material was given for turbines operating in Minjiang River. By using this formula, the sediment erosion of flow passage components in hydraulic turbines with 0Cr13Ni5Mo or similar materials operating in Minjiang River can be predicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call