Abstract

To study the integral forming process of torsion damper shell pulley with characteristic structure is of great significance for producing and developing of the rotational part such as shell pulley. A processing way was proposed by combining plate bending forming and roller structure design, to integral forming torsion damper shell pulley. A model for two-step bending forming was establishedvia finite element method. Under the radial feeding of roller, the outer edge of plate was subjected to compress thickening and secondary thickened after bending, and effective stress and metal flow in the deformation zone were analyzed by using marking point. Combining with the structural characteristics of shell pulley, a design criterion "rotating thickening, gathering thickening" of roller was proposed. The metal flow in deformation zone was effectively controlled through the characteristic structure of roller, thereby the specific region to forming multi-wedge toothwas obtained. The quantitative analysis of the instantaneous part section in the forming process, combining with the design criteria of roller structure and material flow rate, radius and arc angle of roller were determined. With the objective forming parameters, the comparison between the simulation results and the experimental are basically coincided, the ribs were fully formed and the specific regions was thickened to minimum value, which verified the feasibility of sheet-bulk metal rotary bending forming theory and the design criterion of roller structure.

Highlights

  • 最小厚度值。 万里翔[7] 研究了旋平轮的相关工艺 参数对“ 鼓形” 成形的影响,并改进了壳体带轮成齿 区的成形质量;王甲子[8] 通过带槽旋轮的进给作用 使板坯外缘发生双侧增厚成形,并对成形工艺参数 进行正交优化,得到腹板双侧对称式带轮的最优成 形质量。 具有自重轻、动平衡性好、配合精度高等优 点的壳体带轮旋压成形过程由旋弯成形阶段和齿成 形阶段两部分组成,旋弯成形阶段对后续多楔齿成 形质量和精度影响较大[9] 。 目前研究着重于单个 零件的成形,该工艺实现了零件特征区域的增厚,解 决了多楔齿成形缺料问题。 而关于汽车壳体带轮这 类轴对称零件特征结构成形的定量分析和变形区材 料流动的控制仍缺少相应研究,文章提出适用于壳 体带轮特征结构成形的旋弯成形工艺,通过有限元 模拟对成形过程中变形区等效应力和金属流动的分 析,总结旋轮结构设计准则,对具体壳体带轮的旋轮 设计和旋弯成形模拟,结合物理试验,将模拟结果与 试验进行对比验证。

  • To study the integral forming process of torsion damper shell pulley with characteristic structure is of great significance for producing and developing of the rotational part such as shell pulley

  • A processing way was pro⁃ posed by combining plate bending forming and roller structure design, to integral forming torsion damper shell pul⁃ ley

Read more

Summary

Introduction

最小厚度值。 万里翔[7] 研究了旋平轮的相关工艺 参数对“ 鼓形” 成形的影响,并改进了壳体带轮成齿 区的成形质量;王甲子[8] 通过带槽旋轮的进给作用 使板坯外缘发生双侧增厚成形,并对成形工艺参数 进行正交优化,得到腹板双侧对称式带轮的最优成 形质量。 具有自重轻、动平衡性好、配合精度高等优 点的壳体带轮旋压成形过程由旋弯成形阶段和齿成 形阶段两部分组成,旋弯成形阶段对后续多楔齿成 形质量和精度影响较大[9] 。 目前研究着重于单个 零件的成形,该工艺实现了零件特征区域的增厚,解 决了多楔齿成形缺料问题。 而关于汽车壳体带轮这 类轴对称零件特征结构成形的定量分析和变形区材 料流动的控制仍缺少相应研究,文章提出适用于壳 体带轮特征结构成形的旋弯成形工艺,通过有限元 模拟对成形过程中变形区等效应力和金属流动的分 析,总结旋轮结构设计准则,对具体壳体带轮的旋轮 设计和旋弯成形模拟,结合物理试验,将模拟结果与 试验进行对比验证。 板坯外缘在旋弯轮径向进给作用下发生压缩增 厚,并沿轴向弯曲实现聚料的过程,聚料区“ 鼓形” 结构在旋平轮二次进给下发生二次增厚,该工艺对 板坯的 2 次增厚成形,较于腰鼓增厚工艺,稳定性 高、增厚率范围大和增厚可控性高,在一定程度上满 足壳体带轮特征结构的成形,研究旋弯成形机理对 指导壳体带轮成形具有重要意义,如图 1 旋弯成形 示意图。 由于该壳体带轮采用厚度为 3 mm 的弧形外缘 冲锻预制坯,一道次旋弯成形过程需要将其增厚到 成齿最小厚度值 3.4 mm,即增厚率 λ1 要求不小于 1.13。 由于表 1 中各组旋弯轮结构参数组合下的一 次增厚率均达到 1.20,根据图 6 所示已变形区板坯 厚度曲线和图 8 所示旋弯轮已接触区圆心角曲线, 且由于弧面半径 r 越小,增厚率相对越大,故确定旋 轮弧面半径 r = 8 mm,开口圆心角度数 109° ~ 112°, 取整 α 为 110°,旋弯轮过渡结构结合具体零件结构 合理设计。 合理选择组合式旋弯轮的结构参数是保 证成齿预制坯最小厚度值和凸筋成形聚料的关键, 旋弯轮结构尺寸如图 11 所示。

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call