Abstract

Abstract Electromagnetic waves potentially have been used to heat overdense nuclear fusion plasmas through a double mode conversion from ordinary to slow extraordinary and finally to Electron Bernstein Wave (EBW) modes, OSXB. This scheme is efficient and has not any plasma density limit of electron cyclotron resonance heating due to cut-off layer. The efficiency of conversion depends on the isotropic launching angles of the microwaves with the plasma parameters. In this article, a two-step mode conversions of OSXB power transmission efficiency affected by the fast extraordinary (FX) loses at upper hybrid frequency are studied. In addition, the kinetic (hot) dispersion relation of a overdense plasma in a full wave analysis of a OSXB in Wendelstein 7X (W7-X) stellarator plasma has been numerically simulated. The influence of plasma dependent parameters such as finite Larmor radius, electron thermal velocity and electron cyclotron frequency are represented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.