Abstract

During the core disruptive accident (CDA) of sodium-cooled fast reactor (SFR), the molten fuel and steel are solidified into debris particles, which form debris bed in the lower plenum. When the boiling occurs inside debris bed, the flow of coolant and vapor makes the debris particles relocated and the bed flattened, which called debris bed relocation. Because the thickness of debris bed has great influence on the cooling ability of fuel debris in low plenum, it’s very necessary to evaluate the transient changes of the shape and thickness in relocation behavior for CDA simulation analysis. To simulate relocation behavior, a large number of debris bed relocation experiments were carried out by improved bottom gas-injection experimental method in this paper. The effects of different experimental factors on the relocation process were studied from the experiments. The experimental data were also used to further evaluate a semi-empirical onset model for predicting relocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.