Abstract
We investigated the reduction of electrical energy consumption in thepulsed corona discharge process for the removal of nitrogenoxides. Hydrocarbon chemical additives used in the laboratory-scaleexperiment are responsible for the enhancement of the NO conversionthrough the chain reactions of free radicals, such as, R, RCO, RO,and others. Electrical energy consumption per converted NO moleculehas a minimum value of 17 eV when pentanol is injected. When ethyleneand propylene are injected, 30 and 22 eV of electrical energy consumptionare required for the conversion of a NO molecule, respectively. The ratioof the pulse-forming capacitance (Ce) to the reactor capacitance (CR)plays an important role in the energy transfer efficiency to thereactor. The maximum energy transfer efficiency of approximately 72%could be obtained by the pulse-forming capacitance, which is 3.4 timeslarger than the reactor capacitance; the maximum NO conversionefficiency was also observed with the same condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.