Abstract

The focus of this research was on the catalytic reduction of nitrate to nitrogen gas for the water conservation. Zero-valent iron (Fe0) with bimetallic catalyst that carrier supported palladium (Pd) and copper (Cu) was innovatively applied in this study. First, XPS (X-ray photoelectron spectroscopy) analyses and experiments were conducted to study the mechanism of the catalytic reduction of nitrate. In the catalytic reaction, which is regarded as a stepwise process, Fe0 was the electron provider; Pd and Cu supported on carrier played indispensable but distinct roles. The kinetics suggested that the process was better reflected by first-order kinetics of the Langmuir-Hinshelwood model. Additionally, first-order kinetics of the catalytic reaction under the effect of catalysts with different carriers (SiO2, silica gel, kaolin, diatomite, γ-Al2O3, graphene) were further studied. Pd-Cu/graphene catalyst showed higher catalytic performance compared with other catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call