Abstract

A nitrogen-carbon plasma was generated during the deposition of carbon nitride (CNx) thin films by pulsed laser ablation of a graphite target in a discharge nitrogen plasma, and the optical emission of the generated nitrogen-carbon plasma was measured for the diagnostics of the plasma and the characterization of the process of CNx film deposition. The nitrogen-carbon plasma was recognized to contain various species including nitrogen molecules and molecular ions excited in the ambient N2 gas, carbon atoms and atomic ions ablated from the graphite target and CN radicals. The temporal evolution and spatial distribution of the CN emission and their dependence on the substrate bias voltage show two groups of CN radicals flying in opposite directions. One represents the CN radicals formed as the products of the reactions occurring in the nitrogen-carbon plasma, revealing the reactive deposition of CNx film due to the reactive expansion of the ablation carbon plasma in the discharge nitrogen plasma and the effective formation of gaseous CN radicals as precursors for CNx film growth. The other one represents the CN radicals re-sputtered from the growing CNx film by energetic plasma species, evidencing the re-sputtering of the growing film accompanying film growth. And, the re-sputtering presents ion-induced sputtering features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.