Abstract
An accurate mathematical model of radial suspension forces for a bearingless permanent magnet slice motor (BPMSM) is of great significance to levitate the rotor stably and to improve the control accuracy of radial suspension force. In this paper, after a brief introduction on the suspension principle of the BPMSM, the accurate inductance model of two sets of stator windings (torque windings and bearing windings) is deduced. Based on the accurate inductance model and taking rotor eccentricity into account, a complete and precise mathematical model of radial suspension forces of the BPMSM is obtained. In order to confirm the validity and feasibility of this mathematical model, the experiments are carried out on a 4kW prototype of the BPMSM. The experimental results show that the control system designed by using this method has high control accuracy of radial suspension force, strong capability of resisting disturbance, and good static and dynamic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Microwaves, Optoelectronics and Electromagnetic Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.